Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives

نویسندگان

  • Janusz Wasowski
  • Fabio Bovenga
چکیده

a r t i c l e i n f o Multi Temporal Interferometry (MTI) stands for advanced synthetic aperture radar differential interferometry (DInSAR) techniques, which include Permanent/Persistent Scatterers Interferometry — PSInSAR™/PSI and similar methods, as well as Small Baseline Subset — SBAS and related/hybrid approaches. These techniques are capable to provide wide-area coverage (thousands of km 2) and precise (mm–cm resolution), spatially dense information (from hundreds to thousands of measurement points/km 2) on ground surface deformations. New MTI application opportunities are emerging thanks to i) greater data availability from radar satellites, and ii) improved capabilities of the new space radar sensors (X-band Cosmo-SkyMed, C-band RADARSAT-2, TerraSAR-X) in terms of resolution (from 3 to 1 m) and revisit time (from 11 to 4 days for X-band acquisitions). This implies greater quantity and quality information about ground surface displacements and hence improved landslide detection and monitoring capabilities. Even though the applicability of MTI to regional and local-scale investigations of slow landslides has already been demonstrated, the awareness of the MTI utility and its technical limitations among landslide scientists and practitioners is still rather low. By referring to recent works on radar remote sensing , many regional and local scale MTI application examples from the geoscience literature and our own studies, we present an up-to-date overview of current opportunities and challenges in this field. We discuss relevant technical constraints and data interpretation issues that hamper the use of MTI in landslide assessment. Then guidelines on how to mitigate MTI technical limitations and avoid erroneous interpretations of radar-derived slope surface deformations are presented for the benefit of users lacking advanced knowledge in SAR applications. Finally, in view of the upcoming radar satellite launches, future perspectives on MTI applications are outlined and recommendations for applied research priorities are suggested. We foresee that with regular globe-scale coverage, improved temporal resolution (weekly or better) and freely available imagery, new radar satellite background missions such as the European Space Agency's Sentinel-1 will guarantee ever increasing and more efficient use of MTI in landslide investigations. Furthermore, thanks to the improved temporal and spatial resolutions of the new generation radar sensors, significant breakthroughs are expected in detailed slope instability process modeling (e.g. kinematic and geotechnical models), as well as in the understanding of spatial and temporal patterns of landslide movement/activity and their relationships to causative or triggering factors (e.g. precipitation, seismic loading).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landslides in Iceland Studied Using Sar Interferometry

Landslides and debris flows have caused both fatalities and considerable economic loss in Iceland during the past centuries. In a recently started project we plan to study known landslides in eastern and central-north Iceland using satellite radar interferometry (InSAR) and survey many other slopes in search for other active landslides that may exist. Our initial results show that a landslide i...

متن کامل

Monitoring of urban subway lines subsidence Using satellite radar interferometry method (Study area: Part of Tehran Metro Line 7)

Nowadays, satellite radar interferometry method plays an important role in calculating natural and artificial displacements, including displacements caused by floods, earthquakes, landslides, drilling of unauthorized wells, drilling of urban tunnels, etc. Metro tunneling is very important due to the importance of preventing irreparable financial and human losses. In Tehran, especially due to th...

متن کامل

Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry

This paper is addressed to readers without advanced knowledge of remote sensing. It illustrates some current and potential uses of satellite Synthetic Aperture Radar interferometry (InSAR) for landslide assessment. Data acquired by SAR systems can provide 3D terrain models and be used to assist in regional scale investigations, e.g. aimed at evaluation of susceptibility of slopes to failure. Un...

متن کامل

Multi-Temporal X-Band Radar Interferometry Using Corner Reflectors: Application and Validation at the Corvara Landslide (Dolomites, Italy)

From the wide range of methods available to landslide researchers and practitioners for monitoring ground displacements, remote sensing techniques have increased in popularity. Radar interferometry methods with their ability to record movements in the order of millimeters have been more frequently applied in recent years. Multi-temporal interferometry can assist in monitoring landslides on the ...

متن کامل

Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

Owing to the development of spaceborne synthetic aperture radar (SAR) platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution) data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR). Landslides have high socio-economic impacts in many countries because of potential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014